Computer Vision System for Multi-Robot Construction Waste Management: Integrating Cloud and Edge Computing
Author(s): |
Zeli Wang
Xincong Yang Xianghan Zheng Daoyin Huang Binfei Jiang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 December 2024, n. 12, v. 14 |
Page(s): | 3999 |
DOI: | 10.3390/buildings14123999 |
Abstract: |
Sorting is an important construction waste management tool to increase recycling rates and reduce pollution. Previous studies have used robots to improve the efficiency of construction waste recycling. However, in large construction sites, it is difficult for a single robot to accomplish the task quickly, and multiple robots working together are a better option. Most construction waste recycling robotic systems are developed based on a client-server framework, which means that all robots need to be continuously connected to their respective cloud servers. Such systems are low in robustness in complex environments and waste a lot of computational resources. Therefore, in this paper, we propose a pixel-level automatic construction waste recognition platform with high robustness and low computational resource requirements by combining multiple computer vision technologies with edge computing and cloud computing platforms. Experiments show that the computing platform proposed in this study can achieve a recognition speed of 23.3 fps and a recognition accuracy of 90.81% at the edge computing platform without the help of network and cloud servers. This is 23 times faster than the algorithm used in previous research. Meanwhile, the computing platform proposed in this study achieves 93.2% instance segmentation accuracy on the cloud server side. Notably, this system allows multiple robots to operate simultaneously at the same construction site using only a single server without compromising efficiency, which significantly reduces costs and promotes the adoption of automated construction waste recycling robots. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.6 MB
- About this
data sheet - Reference-ID
10810271 - Published on:
17/01/2025 - Last updated on:
25/01/2025