Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture
Author(s): |
Qi Liu
Jiakai Lu Zhiqiang Zhang Zhiang Chen Tao Wang Qi Zheng |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 October 2024, n. 11, v. 14 |
Page(s): | 3643 |
DOI: | 10.3390/buildings14113643 |
Abstract: |
Asphalt pavement durability significantly impacts the service life of roads, and hence, understanding the performance of high-performance asphalt mixtures is crucial. This study investigates the performance of four high-performance asphalt mixtures: heavy-load AC-20, high-viscosity AC-20, heavy-load SMA-13, and heavy-load SMA-10. Linear Amplitude Sweep (LAS) tests revealed that heavy-load asphalt mixtures exhibit superior fatigue resistances, with the fatigue life of heavy-load SMA-13 exceeding 1.5 times that of high-viscosity AC-20 under similar stress levels. Bending Beam Rheometer (BBR) tests at −6 °C, −12 °C, and −18 °C demonstrated that both heavy-load and high-viscosity asphalts had comparable low-temperature crack resistance, with heavy-load SMA-13 showing a stiffness modulus of 627 MPa at −18 °C. Marshall tests indicated that heavy-load AC-20 had the highest stability (14.3 kN) among the tested mixtures, while heavy-load SMA-13 exhibited the highest density (2.603 g/cm³). Dynamic modulus tests spanning a frequency range of 10−4 Hz to 105 Hz at various temperatures showed that heavy-load SMA-13 had a higher dynamic modulus than heavy-load SMA-10, particularly at lower frequencies (higher temperatures). Rutting tests at 60 °C indicated that heavy-load SMA-13 had the lowest rut depth (18.5 mm), outperforming other mixtures by up to 25%. The heavy-load SMA-13 asphalt mixture demonstrated the best overall performance, especially in terms of high-temperature stability, fatigue resistance, and rutting resistance. This study provides essential material performance parameters for the development of durable high-performance asphalt pavement structures. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.34 MB
- About this
data sheet - Reference-ID
10810670 - Published on:
17/01/2025 - Last updated on:
25/01/2025