Comprehensive Review of Binder Matrices in 3D Printing Construction: Rheological Perspectives
Author(s): |
Yeşim Tarhan
İsmail Hakkı Tarhan Remzi Şahin |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 December 2024, n. 1, v. 15 |
Page(s): | 75 |
DOI: | 10.3390/buildings15010075 |
Abstract: |
Three-dimensional printing technology is transforming the construction industry, which is increasingly turning to advanced materials and techniques to meet environmental and economic challenges. This comprehensive literature review evaluated various binder materials, including cement, geopolymers, earthen materials, supplementary cementitious materials, polymers, and biopolymers, with a focus on their environmental impacts and rheological properties. The study revealed an increasing interest in cementitious binders, which deliver essential structural strength and exhibit a wide range of yield stress values (15 to 6500 Pa), influenced by binder type and supplementary materials such as nanoclay. However, the significant CO2 emissions associated with cement pose major sustainability challenges. As a sustainable alternative, geopolymers demonstrate lower yield stress values (800 to 3000 Pa) while ensuring adequate buildability for vertical printing and reducing environmental impact. These findings underscore the need to adopt sustainable binder matrices to align 3D printing construction practices with global sustainability goals. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.98 MB
- About this
data sheet - Reference-ID
10810191 - Published on:
17/01/2025 - Last updated on:
17/01/2025