Comprehensive Evaluation of Thermal Comfort in Ship Cabins: A Case Study of Ships in Yangtze River Basin, China
Author(s): |
Dong Xie
Kun Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 20 September 2022, n. 10, v. 12 |
Page(s): | 1766 |
DOI: | 10.3390/buildings12101766 |
Abstract: |
In recent years, the waterway navigation and transportation industry has been developing rapidly, and the living environment of ship cabins has not received much attention. Using questionnaire surveys, data collection and computer simulations, this study explored the problems and causes related to thermal comfort that affect a crew living onboard. The survey showed differences in the thermal sensations of the crew. Cabins below the deck of a ship are usually more comfortable than those above deck. These differences were related to the range of frequent activities undertaken in the cabins. The data and calculations show that the thermal comfort in the stern winch cabin and the engine cabin was significantly higher than in the top living cabin and the meeting cabin. For cabins without windows in winter, the PMV and PPD indexes of those below deck were on average 11.95% higher and 7.03% lower, respectively, than those above deck, indicating better overall thermal comfort below deck. The simulation showed that the simulated PMV of an occupied cabin was up to 17.55% higher than the actual PMV, indicating that the number of crew members in the cabin significantly affected its level of thermal comfort. The results provide a reference for understanding and improving the thermal environment of ships and temporary water facilities. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
19 MB
- About this
data sheet - Reference-ID
10700370 - Published on:
11/12/2022 - Last updated on:
15/02/2023