0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Comparison Study of Edge Line Estimation Algorithms for Dimensional Quality Assessment of Precast Concrete Slabs

Author(s): ORCID
ORCID

ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2024
Page(s): 1-15
DOI: 10.1155/2024/4166203
Abstract:

Point cloud data-based edge line extraction is an important task for accurate geometrical inspection of precast concrete (PC) elements in the construction industry. Although a few edge extraction algorithms have been developed so far based on point cloud data, little attention has been paid on which edge extraction algorithm performs the best in terms of edge estimation accuracy. To tackle the research gap, this study aims to evaluate currently available edge extraction algorithms in order to determine optimal algorithm for precise geometrical inspection of PC elements. To do this, simulated scan points are first generated and used for algorithm performance analysis using a geometrical model and a measurement noise modeling that determine the coordinates of simulated scan points. For validation of the simulation approach, comparison tests with experimental data are performed and the results show that the simulation approach has a high similarity of more than 90% compared to experimental data in terms of the number of scan points, scan pattern, and scan density, proving the effectiveness of the simulation-based evaluation method. In addition, it shows that a least square regression (LSR) algorithm provides the best performance with an edge extraction accuracy of 1.56 and 2.71 mm for simulated and experimental scan points, respectively. The contributions of this study are (1) development of the geometrical model and noise modeling based on actual scan data and (2) validation of simulated-based evaluation method on the lab-scale PC slabs.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2024/4166203.
  • About this
    data sheet
  • Reference-ID
    10759399
  • Published on:
    15/03/2024
  • Last updated on:
    15/03/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine