Comparison of the Embodied Carbon Emissions and Direct Construction Costs for Modular and Conventional Residential Buildings in South Korea
Author(s): |
Hanbyeol Jang
Yonghan Ahn Seungjun Roh |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 21 December 2021, n. 1, v. 12 |
Page(s): | 51 |
DOI: | 10.3390/buildings12010051 |
Abstract: |
Modular construction is an innovative new construction method that minimizes waste and improves efficiency within the construction industry. However, practitioners are hampered by the lack of environmental and economic sustainability analysis methods in this area. This study analyzes the embodied carbon emissions and direct construction costs incurred during the production phase of a modular residential building and provides comparison to an equivalent conventional residential building. Major drawings and design details for a modular residential building in South Korea were obtained, and the quantity take-off data for the major construction materials were analyzed for a modular construction method and a conventional construction method using a reinforced concrete structure under the same conditions. Focusing on major construction materials during the production phase, the embodied carbon emissions assessment revealed that adopting a modular construction approach reduced the environmental impact by approximately 36%, as compared to the conventional reinforced concrete method. However, in terms of the direct construction cost, the modular construction was approximately 8% more expensive than the conventional reinforced concrete construction method. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
Geographic Locations
2.13 MB
- About this
data sheet - Reference-ID
10657637 - Published on:
17/02/2022 - Last updated on:
01/06/2022