0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Comparison of Simulation and Measurement in a Short-Term Evaluation of the Thermal Comfort Parameters of an Office in a Low-Carbon Building

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 12
Page(s): 349
DOI: 10.3390/buildings12030349
Abstract:

The subject of the following analysis is the Research Centre building of the University of Zilina (RC UNIZA), which was purposely designed as a low-carbon project. The measurements of selected offices were carried out to verify how the building envelope and infill cooling system influences the indoor environment during the summer season. These measurements, along with the parameters of outdoor climate and its influence on the indoor thermal-humidity microclimate were monitored. Most of the data was then used in subsequent transient-state thermal simulation in an ESP-r program. The evaluation took two days to complete wherein an air-cooling system and ceiling radiant cooling were presented. The office during the test was not occupied and was therefore slightly cooler. Under these conditions (measured and simulated), PPD and PMV indexes were calculated during a 10 h time period with varying input parameters (metabolic heat and thermal resistance of clothing). According to the measurement and simulation, these indexes were compared. The comparison shows that the agreement depends on the chosen personal factors such as the thermal resistance of the clothing and metabolic heat. If these are chosen appropriately, then the differences between the results according to the measurement and the simulation were limited.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10661262
  • Published on:
    23/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine