0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Comparing the Cost of Rigid and Flexible Aircraft Pavements Using a Parametric Whole of Life Cost Analysis

Author(s): ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 8, v. 6
Page(s): 117
DOI: 10.3390/infrastructures6080117
Abstract:

The construction and maintenance costs, as well as the residual value, were calculated for structurally equivalent rigid and flexible airfield pavements, for a range of typical commercial aircraft, as well as a range for typical subgrade conditions. Whole of life cost analysis was performed for a range of analysis periods, from 40 years to 100 years. For the standard 40-year analysis period and a residual value based on rigid pavement reconstruction, the rigid pavements had a 40% to 105% higher whole of life cost than equivalent flexible pavements, although this comparison is limited to the pavement compositions and material cost rates adopted. However, longer analysis periods had a significant impact on the relative whole of life cost, although the rigid pavements always had a higher cost than the flexible pavements. The assumed condition of the rigid pavement at the end of the design life was the most influential factor, with a 60-year service life resulting in the rigid pavements having a lower whole of life cost than the flexible pavements, but assuming a requirement for expedient rigid pavement reconstruction resulted in the rigid pavements costing approximately 4–6 times the cost of the flexible pavements over the 40-year analysis period.

Copyright: © 2021 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10723011
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine