0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Comparative Study on the Stability Performance of the Suspen-Dome, Conventional Cable Dome, and Ridge-Beam Cable Dome

Author(s):


ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 2019
DOI: 10.3390/buildings13082019
Abstract:

Stability calculation is the main objective during the analysis of domes. To investigate the effects of the initial defect, geometric nonlinearity, and material nonlinearity on the stability performance of different dome structures, 60 m numerical models were built and optimized by an iterative force-finding APDL program. Then, linear buckling analysis, geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial defects, and dual nonlinear analysis with initial defects were discussed to compare the stability performance of ridge-beam cable domes (RCDs), suspen-domes, and conventional cable domes via finite element analysis. The results show that the buckling loads all follow the order of initial defect + dual nonlinear analysis < initial defect + geometric nonlinear analysis < geometric nonlinear analysis < linear buckling. The addition of ridge beams improves the overall stability and transforms the instability modes from local concave instability to overall torsional buckling. The ultimate load amplification coefficients of the RCD are close to those of the suspen-dome, while the vertical displacements of the RCD are more than those of the conventional cable dome, so the RCD has sufficient stiffness to reduce local displacement. Under 2–3 load combinations, internal ridge beams change from a tensile-bending state to a compressive-bending state, causing the entire instability of the RCD afterwards.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737031
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine