0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Comparative Study on Mechanical Properties of a Tube-Crushing Dissipator and a Symmetric Tube-Crushing Dissipator

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-13
DOI: 10.1155/2019/8156432
Abstract:

The tube-crushing dissipator is widely used in engineering, but it has the eccentricity problem. Therefore, a symmetric tube-crushing dissipator was proposed in this article, and quasistatic and dynamic tests were performed to compare mechanical properties of the tube-crushing dissipators and the symmetric tube-crushing dissipators. The results of the quasistatic tests show that the working force of the tube-crushing dissipators fluctuates around an average value which is about 20% smaller than the activation threshold after activation, while the working force fluctuates around an average value which is approximately equal to the activation threshold after activation. The results of the dynamic tests show that mean force at the crushing section of the tube-crushing dissipators and the symmetric tube-crushing dissipators increases with the increase of the impact velocity. Furthermore, the dynamic load-displacement curves are more volatile than those of the static tests. Therefore, dynamic tests which are more similar to the real working conditions of the dissipators are preferable over static tests. In addition, the metal tubes of the symmetric tube-crushing dissipators collapse vertically both in the quasistatic and dynamic tests; that is, the eccentricity problem of the tube-crushing dissipators is overcome by the symmetric tube-crushing dissipators.

Copyright: © 2019 Wenkang Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10311094
  • Published on:
    04/04/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine