0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Comparative Study of Lightweight Cementitious Composite Reinforced with Different Fibre Types and the Effect of Silane-Based Admixture

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/2190813
Abstract:

This study aims to develop a type of fine-grained lightweight concrete, also known as lightweight cementitious composite (LCC), containing perlite microsphere (PM) and fibres with enhanced impermeability. The effect of polypropylene (PP), polyvinyl alcohol (PVA), and basalt fibres on the fresh and hardened properties of LCC was investigated. Besides, silane-based water repellent admixture was incorporated to reduce the water absorption and enhance the hydrophobicity of LCC. The dry densities of LCC developed were in the range of 912–985 kg/m³. PP fibres have lesser influence on the strengths of LCC. However, PVA fibres enhanced the strength of LCC by up to 35.2% and 28% in the compressive strength and flexural strength, respectively, while the basalt fibres increased both strengths up to 30.1% and 43.5%, respectively. By considering the overall performance, LCC with 0.5% PVA fibres has achieved a good balance in workability and strength. Additionally, silane-based water repellent admixture had an excellent effect in reducing the water absorption and improving the hydrophobicity of LCC. By incorporating 1% of silane-based water repellent admixture, the LCC with 0.5% PVA fibres obtained water-resistant properties with the softening coefficient of 0.85 and water contact angle of 128.2°. In conclusion, a combination of PVA-LCC with 1% waterproofing admixture showed the best performance in terms of mechanical strength as well as hydrophobic properties and had the potential to be used in the fabrication of concrete façade.

Copyright: © Geok Wen Leong et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10646772
  • Published on:
    10/01/2022
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine