0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Comparative Study of Explicit and Stable Time Integration Schemes for Heat Conduction in an Insulated Wall

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 12
Page(s): 824
DOI: 10.3390/buildings12060824
Abstract:

Calculating heat transfer in building components is an important and nontrivial task. Thus, in this work, we extensively examined 13 numerical methods to solve the linear heat conduction equation in building walls. Eight of the used methods are recently invented explicit algorithms which are unconditionally stable. First, we performed verification tests in a 2D case by comparing them to analytical solutions, using equidistant and non-equidistant grids. Then we tested them on real-life applications in the case of one-layer (brick) and two-layer (brick and insulator) walls to determine how the errors depend on the real properties of the materials, the mesh type, and the time step size. We applied space-dependent boundary conditions on the brick side and time-dependent boundary conditions on the insulation side. The results show that the best algorithm is usually the original odd-even hopscotch method for uniform cases and the leapfrog-hopscotch algorithm for non-uniform cases.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10679566
  • Published on:
    17/06/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine