0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Comparative Study of Cyclic and Shake Table Tests for Simple for Dead Load and Continuous for Live Load Steel Bridge System in Seismic Area

Author(s):



Medium: journal article
Language(s): English
Published in: Transportation Research Record: Journal of the Transportation Research Board, , n. 7, v. 2674
Page(s): 233-243
DOI: 10.1177/0361198120921853
Abstract:

A new superstructure to pier connection for simple for dead load and continuous for live load (SDCL) steel bridge system in seismic areas was developed. As proof of concept, component level and system level tests were carried out on scale models. The component test was conducted under cyclic loading and the results showed satisfactory performance conforming to design standards. The same detail was incorporated in a system level shake table testing which was subjected to bidirectional earthquake excitations. The results showed that the connection behaved well under high levels of drift and acceleration. The capacity protected elements sustained minimal damage and the plastic hinge was limited to a predefined location in the column. In this paper, a summary of results from both tests is presented and compared. The results showed that the SDCL components remained within the elastic range. It was concluded that the dowel bars in the cap beam are the main load-carrying elements under excitations in the longitudinal direction of the bridge and the provisions of current design codes are adequate for the design of these reinforcing bars. Both test protocols showed similar behavior despite the differences in construction methods and material properties.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/0361198120921853.
  • About this
    data sheet
  • Reference-ID
    10777933
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine