0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A comparative analysis of parallel SSHI and SEH for bistable vibration energy harvesters

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 12, v. 32
Page(s): 125025
DOI: 10.1088/1361-665x/ad0d10
Abstract:

The present work focuses on ambient vibration energy harvesting. Specifically, this article deals with bistable piezoelectric energy harvesters (PEHs) which exhibits a wider bandwidth than linear oscillators. These complex systems require an energy extraction circuit (EEC) to rectify their voltage to supply power to autonomous sensors. This EEC needs to be optimized in order to increase the harvested power and even the bandwidth of PEHs. Because of the complex dynamics of bistable PEHs, there is a lack of simple and physically-insightful models in the literature that would allow the understanding and optimization of the extraction circuit. To address this issue, the present work derives closed-form models of a bistable PEH coupled to a passive and an active synchronous EEC: respectively the standard energy harvesting (SEH) circuit and the parallel synchronized switch harvesting on inductor (P-SSHI) circuit. Experimental measurements conducted on a custom bistable PEH demonstrate the validity of the proposed models with a relative error lower than 15% on the harvested power and the bandwidth. The proposed models allow to easily understand the influence of the P-SSHI circuit on the dynamics of a bistable PEH. Moreover, a comparison of the performance of the SEH and the P-SSHI circuits, valid for any bistable generator, is proposed. The latter shows that under low electromechanical coupling and low acceleration amplitude the P-SSHI circuit leads to multiply the maximum harvested power up to 4.3 compared to the SEH circuit, and the bandwidth by a factor of 2.3.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad0d10.
  • About this
    data sheet
  • Reference-ID
    10748384
  • Published on:
    14/01/2024
  • Last updated on:
    14/01/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine