A Comparative Analysis of Machine Learning Algorithms in Predicting the Performance of a Combined Radiant Floor and Fan Coil Cooling System
Author(s): |
Shengze Lu
Mengying Cui Bo Gao Jianhua Liu Ji Ni Jiying Liu Shiyu Zhou |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 19 June 2024, n. 6, v. 14 |
Page(s): | 1659 |
DOI: | 10.3390/buildings14061659 |
Abstract: |
Machine learning algorithms have proven to be practical in a wide range of applications. Many studies have been conducted on the operational energy consumption and thermal comfort of radiant floor systems. This paper conducts a case study in a self-designed experimental setup that combines radiant floor and fan coil cooling (RFCFC) and develops a data monitoring system as a source of historical operational data. Seven machine learning algorithms (extreme learning machine (ELM), convolutional neural network (CNN), genetic algorithm-back propagation (GA-BP), radial basis function (RBF), random forest (RF), support vector machine (SVM), and long short_term memory (LSTM)) were employed to predict the behavior of the RFCFC system. Corresponding prediction models were then developed to evaluate operative temperature (Top) and energy consumption (Eh). The performance of the model was evaluated using five error metrics. The obtained results showed that the RF model had very high performance in predicting Top and Eh, with high correlation coefficients (>0.9915) and low error metrics. Compared with other models, it also demonstrated high accuracy in Eh prediction, yielding maximum reductions of 68.1, 82.4, and 43.2% in the mean absolute percentage error (MAPE), mean squared error (MSE), and mean absolute error (MAE), respectively. A sensitivity ranking algorithm analysis was also conducted. The obtained results demonstrated the importance of adjusting parameters, such as the radiant floor supply water temperature, to enhance the indoor comfort. This study provides a novel and effective method for evaluating the energy efficiency and thermal comfort of radiant cooling systems. It also provides insights for optimizing the efficiency and thermal comfort of RFCFC systems, and lays a theoretical foundation for future studies integrating machine learning algorithms in this field. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.33 MB
- About this
data sheet - Reference-ID
10787862 - Published on:
20/06/2024 - Last updated on:
20/06/2024