0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Comparative Analysis of a Radiation-Cooling-Plate-Coupled Adhesion-Jet Air Conditioning System in Different Positions

Author(s):



ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2628
DOI: 10.3390/buildings13102628
Abstract:

Compared with the traditional radiant cooling combined with a displacement ventilation air conditioning system, an air conditioning system of radiant cooling combined with an attached jet can not only effectively prevent dew on the surface of the radiant cooling plate, but also further improve the cooling capacity of the radiant air conditioning system; however, most scholars have installed the radiant cooling plate on the radiant roof and the ground, and there are fewer studies on installing the radiant cooling plate on the two sides of the wall. Based on this, this paper builds an experimental system of radiant air conditioning and conducts experiments on summer working conditions in June–October to experimentally study the indoor thermal and humid environments and thermal comfort under different water supply temperatures when radiant cold panels are installed in single-side-wall, symmetrical-wall, and top-panel positions. The experimental results show that the optimal water supply temperatures of single-side-wall radiation combined with an attached-jet air conditioning system, symmetrical-wall radiation combined with an attached-jet air conditioning system, and roof radiation combined with an attached-jet air conditioning system are 18 °C, 22 °C, and 16 °C, respectively, and at the same time, the temperatures of the human body’s working area under the above water supply temperatures are 26 °C, 26.3 °C, and 26.4 °C, respectively. The average humidities in the working area are 58%, 53%, and 57%, which can meet the requirements of our country’s level II comfort when the indoor heat and humidity environment is stable, the energy consumption amounts of the radiant end are 5.71 kW·h, 3.99 kW·h, and 10.81 kW·h, respectively, and the highest efficiency of cooling and dehumidification is achieved with the symmetric-wall radiation combined with the adherent-jet air conditioning system.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744503
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine