0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Community Information Model and Wind Environment Parametric Simulation System for Old Urban Area Microclimate Optimization: A Case Study of Dongshi Town, China

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 832
DOI: 10.3390/buildings14030832
Abstract:

In the context of an increasingly extreme climate, Urban Heat Island (UHI) mitigation of communities through ventilation has recently attracted more attention. To explore the impact mechanisms of different morphological renovation schemes on its wind and thermal environment, this paper selected the Laozheng Community as a case study and: (1) analyzed measured data to quantitatively investigate the UHI within the community; (2) established the CIM-WTEPS system to construct community information models and to conduct wind environment parametric simulation for seven micro-renovation schemes across three levels; (3) performed correlation analyses between morphology indicators and wind environment indicators; (4) conducted the thermal environment parametric simulation of the community under different schemes. The results reveal that: (1) the Laozheng Community exhibits the Urban Heat Island Intensity (UHII) of up to 6 °C; (2) apart from the “ Hollowing “ scheme, which deteriorates the community wind environment, all other schemes optimize it, potentially increasing the average wind speed by up to 0.03m/s and in the renovated area by up to 0.42 m/s; (3) building density is highly correlated with the average wind speed and the proportion of calm wind area, with correlation coefficients of −0.916 (p < 0.01) and 0.894 (p < 0.01), respectively; (4) the adding of shading facilities can enhance the proportion of areas with lower Universal Thermal Climate Index (UTCI) without adversely affecting the optimization effects of the wind environment, achieving an maximum increase of 3.1%. This study provides a reference for optimizing the community’s microclimate through morphological micro-renovations and detailed operations, aiding designers in better controlling community morphology for in future community renewal and design planning, thereby creating a more hospitable outdoor environment.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773926
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine