0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

CO2 mineralization of demolished concrete wastes into a supplementary cementitious material – a new CCU approach for the cement industry

Author(s):



Medium: journal article
Language(s): English
Published in: RILEM Technical Letters, , v. 6
Page(s): 53-60
DOI: 10.21809/rilemtechlett.2021.141
Abstract:

This contribution discusses the carbon capture and utilization (CCU) approach based on CO₂ mineralization of cement paste from recycled concrete as new approach to capture CO₂ and significantly contribute to the reduction in CO₂ emissions associated with cement production. The current literature suggests that all CO₂ released from the decomposition of limestone during clinker production can be sequestered by carbonation of the end-of-life cement paste. This carbonation can be achieved in a few hours at ambient temperature and pressure and with a relatively low CO₂ concentration (< 10 %) in the gas. The carbonation of cement paste produces calcite and an amorphous alumina-silica gel, the latter being a pozzolanic material that can be utilized as a supplementary cementitious material. The pozzolanic reaction of the alumina-silica gel is very rapid as a result of its high specific surface and amorphous structure. Thus, composite cements containing carbonated cement paste are characterized by a rapid strength gain. The successful implementation of this CCU approach relies also on improved concrete recycling techniques and methods currently under development to separate out the cement paste fines and such. Full concrete recycling will further improve the circular utilization of cement and concrete by using recycled aggregates instead of natural deposits of aggregates.  Although the feasibility of the process has already been demonstrated at the industrial scale, there are still several open questions related to optimum carbonation conditions and the performance of carbonated material in novel composite cements.

Copyright: © 2021 Maciej Zajac, Jan Skocek, Jørgen Skibsted, Mohsen Ben Haha
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10627608
  • Published on:
    05/09/2021
  • Last updated on:
    14/09/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine