0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Characterization of energy dissipative cushions made of Ni–Ti shape memory alloy

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 1, v. 31
Page(s): 015018
DOI: 10.1088/1361-665x/ac383d
Abstract:

Earthquake-resistant design of structures requires dissipating seismic energy by deformations of structural members or additional fuse elements. Owing to its easy-to-produce, plug-and-play, high equivalent damping ratio, and large displacement capacity characteristics, energy dissipative steel cushions (SCs) were found to be an efficient candidate for this purpose. However, similar to other conventional metallic dampers, residual displacement after a strong shaking is the most notable drawback of the SCs. In this work, cushions produced from Ni–Ti shape memory alloy (SMA) are evaluated numerically by experimentally verified finite element models to assess their impact on the performance of earthquake-resistant structures. Furthermore, a reinforced concrete testing frame is retrofitted with energy dissipative steel and Ni–Ti cushions. Performance of the frames (e.g. dissipated energy by the cushions, hysteretic energy to input energy ratio, maximum drift, and residual drift) with different types of cushions are evaluated by nonlinear response history analyses. The numerical results showed that the SCs are effective to reduce peak responses, while Ni–Ti cushions are more favorable to reduce residual drifts and deformations. Hence, a hybrid system, employing the steel and SMA cushions together, is proposed to reach optimal seismic performance.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ac383d.
  • About this
    data sheet
  • Reference-ID
    10636303
  • Published on:
    30/11/2021
  • Last updated on:
    30/11/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine