Characterization of Clay Shock Slurry and Its Safety Risk Control in Shield Crossing Project
Author(s): |
Dingtao Kou
Kai Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 21 January 2025, n. 3, v. 15 |
Page(s): | 329 |
DOI: | 10.3390/buildings15030329 |
Abstract: |
To investigate the mechanism by which clay shock slurry fills excavation gaps and reduces ground layer deformation during shield tunneling, we conducted a study using the project example of Beijing Metro Line 19 from Youanmenwai Station to Niujie Station, which passes through Guang’anmennei Station to CaiShiKou Station of Beijing Metro Line 7 at a close distance. We employed physical and mechanical testing, numerical simulation calculations, and other methods to examine the deformation law and mechanism of the clay shock method in shield tunneling construction. Our results indicate that (1) as the mass concentration of clay shock slurry increases, its permeability decreases significantly; at a mass concentration of 400 kg/m3, clay shock slurry can prevent synchronous grouting slurry from flowing forward, providing optimal filling and support for excavation gaps. (2) Clay shock slurry can reduce friction between the shield shell and soil body by 50%, avoiding super-consolidation, shear damage, and volumetric expansion of the surrounding soil body. (3) Radial grouting with a two-fluid slurry of cement–water glass at a 1:1 ratio within 15 rings after shield tail removal effectively reduces settlement of the existing tunnel. (4) Numerical simulations demonstrate that using clay shock slurry to fill shield tunnel gaps not only significantly reduces construction settlement but also effectively inhibits strata displacement along the tunnel axis. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.4 MB
- About this
data sheet - Reference-ID
10816169 - Published on:
03/02/2025 - Last updated on:
03/02/2025