A Case Study on Field Monitoring Analysis of Deep Foundation Pit in Soft Soils
Author(s): |
Xiaoshuang Zhang
Xiuchuan Zhang Yunshan Han |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-10 |
DOI: | 10.1155/2019/9342341 |
Abstract: |
Field monitoring in the process of excavation of foundation pit is an important measure to reduce the risk. This paper describes a case study of the filed monitoring data during the process of deep foundation pit excavation in soft soil areas. The displacements of the diaphragm wall top were analysed and found that the horizontal displacement showed the convex shape, while the vertical displacement showed the concave shape. Based on the field monitoring data, the deformation mode of lateral displacement of the diaphragm wall belonged to the composite mode. The relationship between maximum lateral displacement and excavation depth showed a strong linear correlation. The horizontal displacements of bracing pillar decreased with the increasing of bracing stiffness, while the effect of bracing stiffness on vertical displacements of bracing pillar could be ignored. The settlement profile computed using the method of Hsieh and Ou was in good agreement with the field observations and better described the development trend of the ground surface settlement. The ratio of the maximum ground surface settlement (δvm) to the maximum lateral displacement of the diaphragm wall (δhm) was in the range of 0.74∼0.88, belonging to the range of 0.5∼1.0 proposed by Hsieh and Ou. This paper provides a reference basis and related guidance for similar projects. |
Copyright: | © 2019 Xiaoshuang Zhang et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.05 MB
- About this
data sheet - Reference-ID
10312872 - Published on:
09/05/2019 - Last updated on:
02/06/2021