Calculation of Subgrade Moisture Index in Seasonally Frozen Regions considering Evapotranspiration at Subzero Temperatures and the Pavement Coverage Effect
Author(s): |
Dongxue Li
Zongyuan Sun Jianming Ling Cong Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/6612197 |
Abstract: |
The moisture index of subgrade material directly below a paved highway is typically represented by that of an uncovered slope. However, existing studies have demonstrated the existence of a significant moisture content difference between an uncovered slope and covered subgrade owing to evapotranspiration. Moreover, under the influence of solar radiation, wind, and other factors, soil evapotranspiration persists even at subzero temperatures. This paper presents an improved method for subgrade moisture index calculation for regions that freeze seasonally. Instead of the conventional Thornthwaite method, the Food and Agriculture Organization Penman–Monteith (FAO-56 PM) method was employed to estimate the potential evapotranspiration (PE) of slope soil at subzero temperatures. Based on the moisture balance principle, the PE and water runoff and deficit were used as input parameters to calculate the moisture index of an uncovered slope. After the effect of pavement cover on subgrade humidity was defined through a correction coefficient determined via the matric suction dependence of soil water content, an optimized calculation formula was developed to estimate the moisture index of the subgrade material according to that of the corresponding slope. The results calculated on a typical seasonally frozen region in Northeast China demonstrated the applicability and accuracy of the proposed method for predicting the subgrade moisture. The potential evapotranspiration of an uncovered highway slope soil at subzero temperatures could reach 9.8%–15.7% of the total annual evapotranspiration. The moisture index range for seasonally frozen regions was −14.2–57.3. These findings will have important implications for effective improvements in the design and construction of subgrade in regions that freeze seasonally or face similar climatic conditions. |
Copyright: | © 2021 Dongxue Li et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.82 MB
- About this
data sheet - Reference-ID
10602128 - Published on:
17/04/2021 - Last updated on:
02/06/2021