0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Building-Information-Modelling-Based Thermal-Energy Performance Evaluation of Silica-Aerogel-Incorporated Rigid Board Roof Insulation Material for Residential Buildings in the Tropical Climate of Malaysia

Author(s):






Medium: journal article
Language(s): English
Published in: IOP Conference Series: Earth and Environmental Science, , n. 1, v. 945
Page(s): 012066
DOI: 10.1088/1755-1315/945/1/012066
Abstract:

Malaysia is located in the equator, with a hot and humid climate. The highest temperature recorded during the day was 39 °C, which leads to discomfort among building occupants, in particular, residential buildings, where indoor thermal comfort is of a higher priority compared to other types of buildings. Hence, the thermal performance of the residential roof assembly needs to be improved to lower the indoor temperature and, accordingly, maintain the level of indoor thermal comfort. In view of the need to improve the thermal performance, a silica-aerogel-incorporated rigid board roof insulation material for residential buildings was developed using kapok fibre, high density polyethylene (HDPE) and silica aerogel. The thermal conductivity of the material was measured. The sample with 4 wt. % and 5 wt. % of silica aerogel content obtained the lowest thermal conductivity of 0.04 W/mK. Silica aerogel content of above 4 wt. % did not result in further reduction of the thermal conductivity. Therefore, it can be concluded that the optimum silica aerogel content for the sample was 4 wt. %. Building-Information-Modelling (BIM)based thermal-energy performance evaluation of the material was performed by generating temperature and cooling load data using Integrated Environmental Solution-Virtual Environment to validate the thermal-energy performance of the material, by installing the material within the roof assembly of a residential BIM. Findings indicate that the material can potentially be employed in the future as a roof insulation material to maintain the level of indoor thermal comfort among residential building occupants.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1755-1315/945/1/012066.
  • About this
    data sheet
  • Reference-ID
    10780763
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine