Building Energy Consumption Prediction Using a Deep-Forest-Based DQN Method
Author(s): |
Qiming Fu
Ke Li Jianping Chen Junqi Wang You Lu Yunzhe Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 January 2022, n. 2, v. 12 |
Page(s): | 131 |
DOI: | 10.3390/buildings12020131 |
Abstract: |
When deep reinforcement learning (DRL) methods are applied in energy consumption prediction, performance is usually improved at the cost of the increasing computation time. Specifically, the deep deterministic policy gradient (DDPG) method can achieve higher prediction accuracy than deep Q-network (DQN), but it requires more computing resources and computation time. In this paper, we proposed a deep-forest-based DQN (DF–DQN) method, which can obtain higher prediction accuracy than DDPG and take less computation time than DQN. Firstly, the original action space is replaced with the shrunken action space to efficiently find the optimal action. Secondly, deep forest (DF) is introduced to map the shrunken action space to a single sub-action space. This process can determine the specific meaning of each action in the shrunken action space to ensure the convergence of DF–DQN. Thirdly, state class probabilities obtained by DF are employed to construct new states by considering the probabilistic process of shrinking the original action space. The experimental results show that the DF–DQN method with 15 state classes outperforms other methods and takes less computation time than DRL methods. MAE, MAPE, and RMSE are decreased by 5.5%, 7.3%, and 8.9% respectively, and R2 is increased by 0.3% compared to the DDPG method. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.15 MB
- About this
data sheet - Reference-ID
10657668 - Published on:
17/02/2022 - Last updated on:
01/06/2022