0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Building a Greener Future: Advancing Concrete Production Sustainability and the Thermal Properties of 3D-Printed Mortars

Author(s):

ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 14
Page(s): 1323
DOI: 10.3390/buildings14051323
Abstract:

The integration of waste materials in extrudable cement mixtures has the potential to make the construction industry more sustainable by reducing carbon footprints and developing eco-friendly materials. This along with advancements in 3D concrete printing (3DCP) provides engineering and architectural benefits by reducing material waste and costs. In this paper, the impact of waste incorporation on properties of mortar and concrete is examined. The use of waste materials, such as pumice, coal slag, agricultural lignocellulosic residues, and recycled rubber tyres, to improve thermal insulation and durability of cementitious composites is discussed. In addition, the incorporation of air-entraining admixtures with surfactant activity is explored for their indirect effect on thermal behaviour, pore size reduction, and enhancement in concrete properties. This review includes important topics such as a strength resistance to freezing and thawing, fire resistance, plasticising effect, and delay in cement hydration. These findings highlight the benefits of using diverse waste materials in construction, providing a multidimensional approach to waste management, cost optimization, and enhanced construction materials in the context of 3DCP.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787912
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine