0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Broad learning for nonparametric spatial modeling with application to seismic attenuation

Author(s):

Medium: journal article
Language(s): English
Published in: Computer-Aided Civil and Infrastructure Engineering, , n. 3, v. 35
Page(s): 203-218
DOI: 10.1111/mice.12494
Abstract: Spatial modeling is a core element in geographical information science. It incorporates geographic information to construct the relationship for interpreting the behavior of spatial phenomena. In this paper, a broad learning framework for nonparametric spatial modeling is presented. Broad learning overcomes the obstacle of expensive computational consumption in deep learning and provides a powerful computationally efficient alternative. In contrast to the deep learning architecture that is configured with stacks of hierarchical layers, broad learning networks are established in a flat manner that can be flexibly reconfigured with the inherited information from the trained network. To develop the broad learning network, a simple prototype network is established as the initial trial and it is modified incrementally to enhance its data fitting capacity. Consequently, complex relationship of unstructured spatial data can be modeled efficiently. To demonstrate the efficacy and applicability of the broad learning framework, we will present a simulated example and a real application using the strong ground motion records on the 2008 great Wenchuan earthquake.
Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1111/mice.12494.
  • About this
    data sheet
  • Reference-ID
    10365309
  • Published on:
    27/08/2019
  • Last updated on:
    08/02/2020
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine