BP Neural Network Improved by Sparrow Search Algorithm in Predicting Debonding Strain of FRP-Strengthened RC Beams
Author(s): |
Guibing Li
Tianyu Hu Dawei Bai |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-13 |
DOI: | 10.1155/2021/9979028 |
Abstract: |
To prevent debonding failure of FRP- (fiber reinforced polymer-) strengthened RC (reinforced concrete) beams, most codes proposed models for debonding strain limitation of FRP reinforcements. However, only a few factors that affect debonding failure are considered in the models. The experimental results show that these models cannot accurately evaluate debonding strain and have a large variability. In order to improve the accuracy of predicting the debonding strain of FRP-strengthened RC beams, a BP neural network model was developed based on the sparrow search algorithm (SSA). To predict the debonding strain of FRP reinforcements, the established neural network model was trained and simulated through experimental data. The results show that the coefficient of variation of the present SSA-BP neural network model is 13%. The main factors affecting debonding strain are the longitudinal reinforcement ratio, stirrup reinforcement ratio, and concrete strength, which are not considered in the code models. The present model has better prediction accuracy and more robustness than the traditional BP neural network and the code models. |
Copyright: | © Guibing Li et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.46 MB
- About this
data sheet - Reference-ID
10609874 - Published on:
08/06/2021 - Last updated on:
17/02/2022