Bond Strength of Reinforcing Steel Bars in Self-Consolidating Concrete
Author(s): |
Micheal Asaad
George Morcous |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 November 2023, n. 12, v. 13 |
Page(s): | 3009 |
DOI: | 10.3390/buildings13123009 |
Abstract: |
This paper presents an experimental investigation of the bond strength of reinforcing steel bars in tension in self-consolidating concrete (SCC). The effects of the reinforcing bar’s location, orientation, size, and coating on the bond strength with SCC were studied and compared to those with conventionally vibrated concrete (CVC). Several SCC mixtures were developed to cover a wide range of applications/components and material types. The fresh properties of the SCC mixtures were determined to evaluate their filling ability, passing ability and stability. Two hundred and thirty-four pull-out tests of rebars embedded in cubes, wall panels and slabs were conducted. Almost half of the tests were conducted to evaluate the bond with SCC and the other half with CVC. Load–slippage relationships were measured for each test. Pull-out test results were analyzed, and the bond strength was reported in two values: critical strength, which corresponds to slippage of 0.01 in. *0.25 mm); and ultimate strength, which corresponds to the maximum load. The critical strength of SCC and CVC were compared against the ACI 318-19 provisions and comparisons between the ultimate strength of SCC and CVC were conducted. The comparisons indicated that SCC has lower bond strength with vertical rebars than CVC, and a 1.3 development length modification factor is recommended. A similar conclusion applies to epoxy-coated and large diameter rebars. Also, SCC with high slump flow has shown a less top-bar effect than that of CVC. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
10.13 MB
- About this
data sheet - Reference-ID
10753372 - Published on:
14/01/2024 - Last updated on:
07/02/2024