Bond Strength between Hybrid Fiber-Reinforced Lightweight Aggregate Concrete Substrate and Self-Compacting Concrete as Topping Layer
Author(s): |
Slamet Widodo
|
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2017, v. 2017 |
Page(s): | 1-9 |
DOI: | 10.1155/2017/7015254 |
Abstract: |
Structural performance evaluation of composite concrete slabs that were constructed using partially precast concreting system which utilized Hybrid Fiber-Reinforced Lightweight Aggregate Concrete (HyFRLWAC) as stay in-place formwork and self-compacting concrete (SCC) as topping layer was conducted in this research. This paper focused on determining the appropriate strength limit criteria of interface between two different concrete layers. The tensile strength was tested using pull-off test, while concrete cohesion was investigated based on modified bisurface shear test, and dual L-shaped shear test was used to determine the effect of normal force on the shear strength of concrete interface. Sample variants were designed based on the substrate surface conditions, compressive strength of the topping layer, and magnitude of perpendicular normal force acting on interface area. The substrate surfaces were prepared in as-placed and grooved conditions for tensile test, cohesion, and shear strength test. Test results indicate that tensile strength, cohesion, and shear strength of the concrete interface are affected by surface condition of the substrate, compressive strength of the topping layer, and the normal force acting perpendicularly on the concrete interface area. Proposed formulation for bond strength prediction between HyFRLWAC as substrate and SCC as topping layer is also presented in this paper. |
Copyright: | © 2017 Slamet Widodo |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.02 MB
- About this
data sheet - Reference-ID
10176839 - Published on:
07/12/2018 - Last updated on:
02/06/2021