0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Bond–Slip Performance between Steel Tube and Self-Compacting Fly Ash Concrete

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2825
DOI: 10.3390/buildings14092825
Abstract:

To reduce the amount of ordinary concrete and then reduce carbon dioxide emission, improving the engineering application range of self-compacting fly ash concrete (FASCC), this study explored the bond–slip traits between FASCC and a steel tube. Six samples were created, and bond–slip push-out tests were performed with varying concrete strength grades and steel tube internal setups. Digital image correlation (DIC) technology was applied to track the surface strain of four samples throughout the experiment. The results show that the outer surface of the steel tube stays mostly undistorted after the concrete is pushed out. Prior to reaching peak load, the load–slip curves of each specimen exhibit a primarily linear load–displacement relationship. Post-peak, the curves diverge into two distinct patterns, namely a sudden drop and a gradual decline. As the strength grade of the inner concrete increases, the interfacial bond between the steel tube and FASCC improves. Additionally, under the same conditions, the internal structure of the steel tube significantly enhances bonding strength. The FA40-Z specimen shows a maximum load that is 25.6% and 53.7% higher than the FA40-G and FA40-C specimens, respectively. The strain evolution patterns of steel tubes within FASCC and regular self-compacting concrete demonstrate similar characteristics. These observations provide valuable insights for the application of FASCC in engineering projects.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799876
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine