0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Bond-Slip Behavior Between C-Shaped Steel and Foamed Concrete in CTS Composite Structural Members

Author(s): ORCID


ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3751
DOI: 10.3390/buildings14123751
Abstract:

The bond-slip behavior between cold-formed thin-walled steel (CTS) and foamed concrete (FC) is a critical issue in the mechanical performance of FC-filled CTS composite wall structures. Thus, this study provides experimental and theoretical research on the bond-slip behavior between CTS and FC. A total of eleven specimens were tested using push-out configurations, considering the number of web holes, foamed concrete (FC) strength, anchorage length, and CTS section splice form. A constitutive model for bond-slip was proposed, and the regression formulas for accurately predicting the characteristic bond strength between CTS and foamed concrete were established. A finite element model was developed to investigate the bond-slip mechanism at the interface between CTS and FC. The bond-slip constitutive model accurately fits the experimental and finite element results. The results indicate that the ultimate bond strength of the specimens increases with the number of web holes; when the number of web holes reaches two, the ultimate bond strength is 155.4% of that of the non-perforated specimens. As the concrete strength increases from 3.43 MPa to 11.26 MPa, the ultimate bond strength of specimens with two web holes improves by 23.1%, while non-perforated specimens have a 54.7% enhancement. When the anchorage length is extended from 200 mm to 400 mm, the ultimate bond strength decreases by 29.3%. Additionally, when steel sections are joined in a double-span I form, the bond strength increases by 91.6% and 95.8% compared to the single-span form and the double-span box form, respectively.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810423
  • Published on:
    17/01/2025
  • Last updated on:
    25/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine