Blast Resistance in Sandwich Structures Based on TPMS
Author(s): |
Li He
Tengfei Li Dongwang Zhong Haohao Tao Yuesen Peng Shasha Chen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 26 October 2023, n. 11, v. 13 |
Page(s): | 2835 |
DOI: | 10.3390/buildings13112835 |
Abstract: |
This study analyzes the blast resistance in triple-period minimal surface (TPMS) sandwich panel structures with a cellular structure. The explosion test of the TPMS sandwich panel was carried out, and experimental data verified the effectiveness of the finite element model. Four TPMS configurations, Diamond, Gyroid, IWP, and Primitive, were selected as the core of the sandwich panel to determine the dynamic response process of the TPMS sandwich panel under the action of a blast load. The effects of the thickness of the core material and the explosive charge on the blast resistance in the TPMS sandwich panel were investigated. The results show that the increase in core thickness reduces the blast energy absorption efficiency of the sandwich panel, and the energy resistance in the Diamond configuration sandwich panel is stronger than the other three configurations under the same blast load; the increase in explosive charge significantly increases the displacement of the sandwich panel, and the Gyroid configuration shows better energy absorption effect; different TPMS configurations and panel thickness have a significant effect on the deformation and energy absorption of the sandwich panel under the blast load. The results of this study can promote the application of TPMS sandwich structures in blast-resistant structures. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.44 MB
- About this
data sheet - Reference-ID
10753850 - Published on:
14/01/2024 - Last updated on:
07/02/2024