0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Blast-Resistance and Damage Behavior of Underwater Explosion for Concrete Gravity Dam Considering Concrete Strength Partition

Author(s):
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2237
DOI: 10.3390/buildings13092237
Abstract:

The consequences of dam damage caused by explosions, wars, and terrorist attacks are extremely serious, and they can cause casualties among downstream residents. Studying the damage behaviors of dams is a prerequisite for improving their anti-knock performance. Researchers view the dam as homogeneous for research; but in reality, the concrete strength of the dam decreases from bottom to top. The partitioning of dam concrete strength can meet the different functional and economic requirements of a concrete gravity dam (referred to as concrete strength partition gravity dam (CSPGD)). Therefore, CSPGD shows a more complex dynamic performance and failure characteristics under the impact load of an underwater explosion. First, by investigating the current status of anti-knock research on CSPGDs, a fully coupled finite element numerical model for an underwater explosion of CSPGD was established. Considering the initial stress such as the self-weight of the dam, the upstream reservoir hydrostatic pressure, and the uplift pressure of the dam foundation during the service period, the anti-knock performance of CSPGD was studied. The results showed that the interface of CSPGD had a strain rate effect under the action of blast load, and it was easy to produce tensile failure at a low strain rate. In addition, the dynamic response and damage characteristics under different explosion scenarios such as explosive charge weight (w), detonation depth (D), and standoff distance (R) were further studied. The dam crest was always a weak anti-knock part, and the foundation anti-sliding stability was also very important to dam safety. Therefore, it was proposed and suggested to use the crack length of the dam crest and dam foundation to evaluate the overall anti-knock capacity of CSPGD. The study also found that the detonation depth affected the response time of dam damage and had a significant impact on the anti-knock performance of CSPGD.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10740664
  • Published on:
    12/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine