0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Blast Mitigation of Reinforced Concrete Structures Incorporating Shear Walls in Modern Building Designs

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2621
DOI: 10.3390/buildings13102621
Abstract:

Material science advancements have resulted in the development of high-strength concrete and steel reinforcement, allowing more efficient and stable buildings against natural and manmade disasters. Increasing security concerns and the potential threat from terrorist activities have led to the safety and resilience of structures against blast loads in modern construction. The present study investigates the performance of reinforced concrete shear walls in mitigating blast-induced vibrations. The study examines four different reinforced concrete buildings based on their shapes, namely square, rectangular, C-shaped, and L-shaped, to understand the blast behaviours with and without shear walls. The study presents a methodology to protect the regular and irregular buildings equipped with shear walls against blast loads at varying standoff distances of 100 m, 200 m, 300 m, and 400 m, respectively. The study also compares the efficiency of passive control dampers and shear walls in enhancing the buildings’ performance against blast vibrations. The best placement of the shear walls is also evaluated for all the selected buildings. The study also considers the effect of shear wall thickness in mitigating blast-induced vibrations in multi-storey buildings. The study also discusses the design guidelines and reinforcement detailing of shear walls to protect buildings against detrimental blast effects.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744386
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine