0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

BIM-Based Digital Construction Strategies to Evaluate Carbon Emissions in Green Prefabricated Buildings

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1689
DOI: 10.3390/buildings14061689
Abstract:

In this paper, we explore the integration of building information modeling (BIM) technology to assess carbon emissions, emphasizing the unique contributions to smart and sustainable approaches in prefabricated buildings and focusing on the application of digital construction strategies facilitated by BIM to evaluate carbon emissions in green prefabricated buildings, with a detailed case study on C-House at Southeast University, Nanjing, China. The research methodology involved creating a BIM model of C-House in Rhino and collecting data from the operationalization phase. This research work delves into analyzing the structural components, on-site assembling process, and evaluation of carbon emissions by using a BIM-based assessment, as well as the energy load and consumption of prefabricated components, including sustainable PV panels, to enhance building efficiency and sustainability. The findings uncover the life cycle of C-House, which spans seven stages, compared with the five stages of conventional builds. Currently in its third cycle, C-House exhibits significant reductions of 70.57% in carbon emissions during the second cycle and 43.53% in the first one. This highlights the pattern showing that the prolonged reuse of prefabricated buildings leads to decreasing emissions over time. Such results underscore the potential carbon emission reductions and environmental advantages of reusing green prefabricated buildings. Furthermore, this study provides insights into the entire life cycle of the building, from inception to occupation and post-phase performance evaluation. By employing BIM for modeling, simulation, and analysis, we offer practical insights into the application of smart technologies for sustainable construction practices, significantly contributing to the advancement of green and digital construction technologies.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787559
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine