0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Beneficial and Detrimental Effects of Soil-Structure Interaction on Probabilistic Seismic Hazard and Risk of Nuclear Power Plant

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-18
DOI: 10.1155/2018/2698319
Abstract:

The purpose of this study is to investigate the soil-structure interaction (SSI) effect on the overall risk of a PWR containment building structure with respect to two failure modes: strength and displacement. The precise quantification of the risk within the seismic probabilistic risk assessment framework depends considerably on an accurate treatment of the seismic response analysis. The SSI effect is one of the critical factors to consider when accurately predicting structural responses in the event of an earthquake. Previous studies have been conducted by focusing more on the positive side of the SSI effects and the effects mainly on the seismic fragility result. Therefore, this paper presents the results of a study of the SSI effect on the overall risk. Also, the study relies on an emphasis on revealing a beneficial and a detrimental effect of the SSI by utilizing an example of the containment structure in three soil conditions and two main failure modes. As a result, the consideration of SSI shows a complete conflicting effect on the seismic fragility and risk results depending on two failure modes considered in this study. This has a positive effect regarding the strength failure mode, but this brings a negative effect regarding the displacement failure mode. The risk fluctuation width is particularly noticeable in the site having a considerable change in seismic hazard information such as Los Angeles on the western site of the US. Such results can be expected to be utilized in a future study for investigating the pros and cons of the SSI effect associated with various failure modes in diverse conditions.

Copyright: © 2018 Shinyoung Kwag et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Structure Types

  • About this
    data sheet
  • Reference-ID
    10176580
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine