0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Behavior of Natural Pozzolana-Lime-stabilized Clayey Soils Artificially Contaminated by Sulfates

Author(s):
Medium: journal article
Language(s): English
Published in: Jordan Journal of Civil Engineering, , n. 4, v. 17
DOI: 10.14525/jjce.v17i4.07
Abstract:

The use of lime in sulfate-bearing clayey soils has historically caused structural damage to infrastructures due to the formation of an expansive ettringite mineral. In this paper, a research was conducted to study the effectiveness of natural pozzolana (NP) for providing better stabilization of sulfate-bearing soils. Compaction and free-swell potential tests were first performed on lime-stabilized grey and red clayey soils (GS and RS) containing different contents of added sodium and calcium sulfates (2, 4 and 6% Na2SO4 or CaSO4·2H2O). Then, the same tests were repeated by adding 20%NP. The test results indicated that the presence of 4% and 6% Na2SO4 in the soil resulted in an abnormal increase in the swell potential of both lime-stabilized GS and RS. The X-ray diffraction (XRD) results confirmed the growth of the ettringite mineral responsible for this higher swell potential. However, the use of 8% lime with 20%NP in stabilizing sulfate-bearing clayey soils produced significant improvements in the optimum moisture content (OMC) and maximum dry density (MDD), as well as in the swell potential. The addition of 20%NP into the lime-stabilized GS and RS eliminated the harmful effect of Na2SO4. In addition, for 120-day curing period, the use of 6% CaSO4·2H2O was found very effective by reducing the swell potential of NP-lime-stabilized GS and RS from 7.33% to 0.4% and from 2.79% to 0.2%, respectively trips. KEYWORDS: Clayey soils, Mineral additives, Sulfates, Compaction, Swell potential, Stabilization.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.14525/jjce.v17i4.07.
  • About this
    data sheet
  • Reference-ID
    10744144
  • Published on:
    28/10/2023
  • Last updated on:
    19/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine