0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Axial Compression Behaviour and Modelling of Pultruded Basalt-Fibre-Reinforced Polymer (BFRP) Tubes

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 13
Page(s): 1397
DOI: 10.3390/buildings13061397
Abstract:

Laminated fibre-reinforced polymer (FRP) tubes are increasingly used as compression members in large-span spatial structures due to their high bearing capacity, corrosion resistance, and superior stability compared to high-strength steel pipes. In this study, axial compression tests were conducted on slender BFRP tubes to evaluate their compression characteristics as compression members. The results indicated that BFRP tubes exhibited three distinct failure modes, namely local failure, critical failure, and buckling failure. Overall, buckling was identified as the primary mode of failure under compression. The stress–strain curves of BFRP tubes were characterized by three stages, including elastic, elastic-plastic, and plastic stages. To enable design-oriented approaches, two three-stage theoretical models for BFRP tubes were developed through experimental data analysis. The models predicted the stress–strain curves and the load-lateral deflection curves, taking into account the post-peak softening behaviour of the stress–strain curves. Comparisons between the test results and the predictions calculated using the proposed models indicated that they were in good agreement.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728278
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine