0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Automation of Measuring Actual Productivity of Earthwork in Urban Area, a Case Study from Montreal

Author(s):
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 8
Page(s): 178
DOI: 10.3390/buildings8120178
Abstract:

The construction of a new facility in an urban area, such as a downtown area, involves considerable earthwork excavation most of the time. Measuring the actual productivity of earthwork operations that involve heavy machinery can be a complex task for project managers. The complexity contributes to the impact of the many factors involved, the required accuracy, and the uncertainties associated with such operations. Traditionally, measuring actual productivity is carried out manually by measuring the actual quantities of the excavated earth. Measuring actual productivity manually is time-consuming and not necessarily accurate. The paper presents a case study project in Montreal to investigate the application of a developed methodology that is affordable for small to medium size contractors. It integrates the GPS and fuzzy set theory as an alternate effective methodology for measuring actual onsite productivity during the construction stage in an urban area. The developed methodology combines GPS data that are collected in near real time, fuzzy set theory (FST), and Google Earth. FST is used to define the variability and uncertainty which exists in the duration of the main activities of the earthwork (loading, traveling, dumping, and returning). Google Earth is used for graphical presentation and to store the collected GPS data of the moving hauling units. The productivity estimated by the developed methodology was compared with that provided by a simulation-based model, in which the collected GPS data are used to define the duration of earthmoving moving operations, and with that measured manually by contractor. The developed methodology proves that the utilization of GPS data and FST can yield a more accurate estimation of onsite actual productivity compared to that provided by simulation-based approaches, but in much a simpler way regarding the computation effort and time.

Copyright: © 2018 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Geographic Locations

  • About this
    data sheet
  • Reference-ID
    10324862
  • Published on:
    22/07/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine