0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Augmented Data-Driven Machine Learning for Digital Twin of Stud Shear Connections

Author(s):

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 14
Page(s): 328
DOI: 10.3390/buildings14020328
Abstract:

Existing design codes for predicting the strength of stud shear connections in composite structures are limited when adapting to constant changes in materials and configurations. Machine learning (ML) models for predicting shear connection are often constrained by the number of input variables, resembling conventional design equations. Moreover, these models tend to overlook considerations beyond those directly comprising the connection. In addition, the data used in ML are often biased and limited in quantity. This study proposes a model using AutoML to automate and optimize the process for predicting the ultimate strength and deformation capacity of shear connections. The proposed model leverages a comprehensive dataset derived from experimental studies and finite element analyses, offering an advanced data-driven solution to overcome the limitations of traditional empirical equations. A digital twin model for the static design of pushout specimens was defined to replace existing empirical design codes. The digital twin model incorporates predictions of the geometry model, ultimate strength, and slip as input parameters and provides criteria for evaluating the limit state through a bilinear load–slip curve. This study advances predictive methodologies in structural engineering by emphasizing the importance of ML in addressing the dynamic and multifaceted nature of shear connection behaviors.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10760310
  • Published on:
    15/03/2024
  • Last updated on:
    25/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine