0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Assessment of Seismic Building Vulnerability from Space

Author(s):





Medium: journal article
Language(s): English
Published in: Earthquake Spectra, , n. 4, v. 30
Page(s): 1553-1583
DOI: 10.1193/121812eqs350m
Abstract:

This paper quantitatively evaluates the suitability of multi-sensor remote sensing to assess the seismic vulnerability of buildings for the example city of Padang, Indonesia. Features are derived from remote sensing data to characterize the urban environment and are subsequently combined with in situ observations. Machine learning approaches are deployed in a sequential way to identify meaningful sets of features that are suitable to predict seismic vulnerability levels of buildings. When assessing the vulnerability level according to a scoring method, the overall mean absolute percentage error is 10.6%, if using a supervised support vector regression approach. When predicting EMS-98 classes, the results show an overall accuracy of 65.4% and a kappa statistic of 0.36, if using a naive Bayes learning scheme. This study shows potential for a rapid screening assessment of large areas that should be explored further in the future.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1193/121812eqs350m.
  • About this
    data sheet
  • Reference-ID
    10672547
  • Published on:
    18/06/2022
  • Last updated on:
    18/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine