Assessment of Energy Recovery Potential in Urban Underground Utility Tunnels: A Case Study
Author(s): |
Tong Wei
Mingyue Fan Zijun Xu Weijun Li Zhaolin Gu Xilian Luo |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 October 2024, n. 10, v. 14 |
Page(s): | 3113 |
DOI: | 10.3390/buildings14103113 |
Abstract: |
Underground spaces contain abundant geothermal energy, which can be recovered for building ventilation, reducing energy consumption. However, current research lacks a comprehensive quantitative assessment of its energy recovery. This research evaluates the energy recovery potential of the Xingfu Forest Belt Urban Underground Utility Tunnels. Field experiments revealed a 7 °C temperature difference in winter and a 2.5 °C reduction during the summer-to-autumn transition. A computational fluid dynamics (CFD) model was developed to assess the impact of design and operational factors such as air exchange rates on outlet temperatures and heat exchange efficiency. The results indicate that at an air change rate of 0.5 h−1, the tunnel outlet temperature dropped by 10.5 °C. A 200 m tunnel transferred 8.7 × 1010 J of heat over 30 days, and a 6 m × 6 m cross-sectional area achieved 1.1 × 1011 J of total heat transfer. Increasing the air exchange rate and cross-sectional area reduces the inlet–outlet temperature difference while enhancing heat transfer capacity. However, the optimal buried depth should not exceed 8 m due to cost and safety considerations. This study demonstrates the potential of shallow geothermal energy as an eco-friendly and efficient solution for enhancing building ventilation systems. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.86 MB
- About this
data sheet - Reference-ID
10804918 - Published on:
10/11/2024 - Last updated on:
10/11/2024