Assessment and Comparison of Cable-Actuation of Pill Bug Inspired Adaptive Origami Structure Using Computer Vision and Dynamic Relaxation
Author(s): |
Angshuman C. Baruah
Ann C. Sychterz |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Frontiers in Built Environment, February 2022, v. 8 |
DOI: | 10.3389/fbuil.2022.813543 |
Abstract: |
The ancient art of origami can be harnessed for the development of adaptive structures, including those at civil-engineering scale. This can be enhanced with biomimetics, the study and development of synthetic mechanisms that mimic the structure or functionality of biological organisms in nature. The origami structure presented in this paper draws inspiration from pill bugs, a species of woodlice that can alter its shape between a flat and a rolled configuration. The panel type origami pill bug structure is modelled as bars, hinges, and active elements for actuation. This paper provides analysis and comparison of a new formulation of the form-finding method called dynamic relaxation for the analytical study with a computer vision algorithm for the experimental study of a 3D-printed model. The objective of this study is to simulate and experimentally validate the quasi-static and dynamic response to characterize the kinematic properties and dynamic behavior of the origami pill bug structure. |
Copyright: | © 2022 Angshuman C. Baruah, Ann C. Sychterz |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.2 MB
- About this
data sheet - Reference-ID
10662263 - Published on:
28/03/2022 - Last updated on:
01/06/2022