0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Architectural Simulations on Spatio-Temporal Changes of Settlement Outdoor Thermal Environment in Guanzhong Area, China

Author(s):


ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 12
Page(s): 345
DOI: 10.3390/buildings12030345
Abstract:

This paper aims to provide data support for rural sustainable development through analyzing the spatio-temporal characteristics of the interactions of the outdoor thermal environment. The ordinary and representative rural settlements in the Guanzhong area were selected to analyze the dynamic process of the rural thermal environment through field measurements and numerical simulations. RMSE (root mean square error) and MAPE (mean absolute percentage) were used to verify the numerical simulation model, and physiological equivalent temperature (PET) was used to evaluate the outdoor thermal environment. Results show that the ENVI-met model reliably predicts the thermal environment of a rural settlement, as the air temperature and relative humidity values range of the RMSE and MAPE were 0.85–1.79 and 2.04–5.11%, respectively. Moreover, the air temperature rose by 3.08% and relative humidity dropped by 4.42% from 2003 to 2018 as the amount of artificial surfaces increased by 35.4% and the PET index gradually increased by 27.43% at daytime and 34.03% at nighttime. Furthermore, trees could improve the outdoor thermal environment significantly, mainly because the average air temperature decreased by 3.6% and relative humidity increased by 8%, and the PET index decreased by 12.4% and 13.1%, respectively, for daytime and nighttime. This case study is representative of rural settlements in the Guanzhong plain, and thus is an appeal to rural planners to pay attention to the thermal environment issues caused by increased artificial underlay surfaces and to focus on trees in rural areas.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10661154
  • Published on:
    23/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine