Application of the Coupled Markov Chain in Soil Liquefaction Potential Evaluation
Author(s): |
Hsiu-Chen Wen
An-Jui Li Chih-Wei Lu Chee-Nan Chen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 December 2022, n. 12, v. 12 |
Page(s): | 2095 |
DOI: | 10.3390/buildings12122095 |
Abstract: |
The evaluation of localized soil-liquefaction potential is based primarily on the individual evaluation of the liquefaction potential in each borehole, followed by calculating the liquefaction-potential index between boreholes through Kriging interpolation, and then plotting the liquefaction-potential map. However, misjudgments in design, construction, and operation may occur due to the complexity and uncertainty of actual geologic structures. In this study, the coupled Markov chain (CMC) method was used to create and analyze stratigraphic profiles and to grid the stratum between each borehole so that the stratum consisted of several virtual boreholes. The soil-layer parameters were established using homogenous and random field models, and the subsequent liquefaction-potential-evaluation results were compared with those derived using the Kriging method. The findings revealed that within the drilling data range in this study, the accuracy of the CMC model in generating stratigraphic profiles was greater than that of the Kriging method. Additionally, if the CMC method incorporated with random field parameters were to be used in engineering practice, we recommend that after calculating the curve of the mean, the COV should be set to 0.25 as a conservative estimation of the liquefaction-potential interval that considers the evaluation results of the Kriging method. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.38 MB
- About this
data sheet - Reference-ID
10699749 - Published on:
10/12/2022 - Last updated on:
15/02/2023