0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Application of Support Vector Regression to the Prediction of the Long-Term Impacts of Climate Change on the Moisture Performance of Wood Frame and Massive Timber Walls

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 11
Page(s): 188
DOI: 10.3390/buildings11050188
Abstract:

The objective of this study was to explore the potential of a machine learning algorithm, the Support Vector Machine Regression (SVR), to forecast long-term hygrothermal responses and the moisture performance of light wood frame and massive timber walls. Hygrothermal simulations were performed using a 31-year long series of climate data in three cities across Canada. Then, the first 5 years of the series were used in each case to train the model, which was then used to forecast the hygrothermal responses (temperature and relative humidity) and moisture performance indicator (mold growth index) for the remaining years of the series. The location of interest was the exterior layer of the OSB and cross-laminated timber in the case of the wood frame wall and massive timber wall, respectively. A sliding window approach was used to incorporate the dependence of the hygrothermal response on the past climatic conditions, which allowed SVR to capture time, implicitly. The variable selection was performed using the Least Absolute Shrinkage and Selection Operator, which revealed wind-driven rain, relative humidity, temperature, and direct radiation as the most contributing climate variables. The results show that SVR can be effectively used to forecast hygrothermal responses and moisture performance on a long climate data series for most of the cases studied. In some cases, discrepancies were observed due to the lack of capturing the full range of variability of climate variables during the first 5 years.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10607994
  • Published on:
    15/05/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine