0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Application of Regional Climatic Models to Assess the Performance Evaluation of Changes on Flood Frequency in Woybo Catchment, Ethiopia

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-16
DOI: 10.1155/2022/3351375
Abstract:

Climate change increases the possibility in varying rainfall and temperature that needs a detail study to estimate flood frequency under changing climate for the Woybo catchment in the Omo River basin of Ethiopia. The impact on flood frequency was evaluated using multiple climate models under RCP4.5 and RCP8.5 emission scenarios for 2020s, 2050s, and 2080s compared to 1976–2005. Hydrologic Engineering Center of Hydrologic Modeling System (HEC-HMS) was used to simulate streamflow after sensitivity analysis, calibration, and validation of the model for the catchment. Flood frequency analysis was initiated after discharge through a longer section followed by frequency analysis by partial duration series approach which provides a better result even though threshold selection is cumbersome. The results from the nonparametric Mann–Kendall test illustrate a slight increase in annual rainfall. The projected flow is expected to increase in autumn, summer, and annually by 8.34, 13.54, and 5.02% in the 2050s and 12.20, 18.06, and 11.87% in 2080s, respectively, under RCP4.5, while it is likely to increase in summer and annually by 15.66 and 5.82% in 2050s and 10.55 and 29.51% in 2080s, respectively, under RCP8.5. Flood frequency was analyzed by using Gumbel’s method. The flood magnitude predicts a positive change for 10, 50, 100, 200, 500, and 1000 years recurrent periods under both scenarios. This research paves way to reduce the negative impacts of flooding and plays a vital role in providing estimates of recurrence floods which are used in designing roads, dams, and bridges for sustainable water resources management.

Copyright: © Tigistu Yisihak Ukumo et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10679013
  • Published on:
    18/06/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine