Application of a Modified Differential Quadrature Finite Element Method to Flexural Vibrations of Composite Laminates with Arbitrary Elastic Boundaries
Author(s): |
Wei Xiang
Xin Li Lina He |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 16 September 2022, n. 9, v. 12 |
Page(s): | 1380 |
DOI: | 10.3390/buildings12091380 |
Abstract: |
This paper formulates a modified differential quadrature finite element method (DQFEM) by a combination of the standard DQFEM and the virtual boundary spring technique, which makes it easy to implement arbitrary elastic restraints by assigning reasonable values to the boundary spring stiffnesses. This new formulated method can offer a unified solution for flexural vibrations of composite laminates subjected to general elastic boundary combinations including all the classical cases. The influences of the number of Gauss–Lobatto nodes and the boundary spring stiffnesses on the convergence characteristics of natural frequencies are investigated, and some conclusions are drawn in terms of the minimum number of unilateral nodes required to generate convergent solutions and the optimal values of the boundary spring stiffnesses to simulate classical boundaries. Numerical examples are performed for composite laminates under various classical boundary conditions. Excellent accuracy, numerical stability, and reliability of the present method are demonstrated by comparisons with available exact and numerical solutions in open literatures. Additionally, for elastically constrained composite laminates, which are beyond the scope of most existing approaches, numerous new results obtained by the present method may serve as reference values for other research. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.64 MB
- About this
data sheet - Reference-ID
10692772 - Published on:
23/09/2022 - Last updated on:
10/11/2022