0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Application and Experimental Validation of Seven-Degree-of-Freedom Beam Element for Girder Bridges during Deck Construction

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 12, v. 8
Page(s): 175
DOI: 10.3390/infrastructures8120175
Abstract:

During bridge deck construction, the deck finishing machine and the fresh concrete often produce large vertical loads and torsional moments acting on the bridge girder system. In some cases, these loads can cause excessive vertical deflection and transverse rotation in the bridge girders, leading to many maintenance and safety problems, such as changes in deck thickness and local and global instabilities during construction. To minimize the potential problems caused by deck construction, the AASHOTO LRFD Bridge Design Specification requires consideration of these torsional moments during the design procedure, and a detailed three-dimensional finite element analysis may be conducted. However, for bridge girders with open-section thin-walled sections, only the solid or shell element can be used to recognize the warping of the girder since the torsional warping effect is not included in the classical beam element. In this research, a warping degree of freedom was added to a beam element, and a three-dimensional beam element with seven degrees of freedom (7-DOF) at each node was derived as an alternative method for analyzing girder bridges during deck construction. A computer program based on the 7-DOF beam element was also developed in MATLAB. To assess the 7-DOF beam element, one bridge was selected to measure the transverse rotation, vertical deflection, and stress of the exterior girder and the first interior girder during deck construction. Also, three full-scale numerical models using solid elements, classical three-dimensional beam elements, and 7-DOF beam elements were created based on the geometries and loads of the experimental bridge. A comparative study was conducted by comparing the results from the numerical models and experimental monitoring data to evaluate the 7-DOF beam element. The results showed that the 7-DOF beam element had excellent behavior in analyzing the girder bridges under construction load, especially in the torsional analysis of bridge girders. Also, unlike the solid element model, which also provided reasonable results, the 7-DOF beam element model can compute the internal forces of the cross-sections along the bridge, which allows the 7-DOF beam element to be an alternative approach for design and research requiring less modeling effort and computational complexity.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10756623
  • Published on:
    08/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine