0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Analyzing the Impact of Urban Planning and Building Typologies in Urban Heat Island Mitigation

Author(s): ORCID



ORCID


ORCID

ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 12
Page(s): 537
DOI: 10.3390/buildings12050537
Abstract:

Urban and building typologies have a serious impact on the urban climate and determine at large the magnitude of the urban overheating and urban heat island intensity. The present study aims to analyze the impact of various city typologies and urban planning characteristics on the mitigation of the urban heat island. The effect of the building height, street width, aspect ratio, built area ratio, orientation, and dimensions of open spaces on the distribution of the ambient and surface temperature in open spaces is analyzed using the Sydney Metropolitan Area as a case study for both unmitigated and mitigated scenarios. Fourteen precincts are developed and simulated using ENVI-met the simulation tool. The ambient temperature, surface temperature, and wind speed are extracted. The parameter ‘Gradient of the Temperature Decrease along the Precinct Axis’ (GTD) is introduced to study the cooling potential of the various precincts. In the mitigated precincts, the GTD ranges between 0.01 K/m to 0.004 K/m. In the non-mitigated precincts, the GTD ranges between 0.0093 K/m to 0.0024 K/m. A strong correlation is observed between the GTD of all the precincts, with and without mitigation, and their corresponding average aspect ratio, (Height of buildings to Width of streets). The higher the aspect ratio of the precinct, the lower the cooling potential. It is also observed that the higher the Built Area Ratio of the precincts, the lower the cooling contribution of the mitigation measures.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10664321
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine